61 research outputs found

    P(EMA-co-HEA)/SiO2 hybrid nanocomposites for guided dentin tissue regeneration: structure, characterization and bioactivity

    Full text link
    Se sintetizaron nanocompuestos híbridos en bloque de poli(etil metacrilato-co-hidroxietil acrilato) 70/30 wt%/sílice, P(EMA-co-HEA)/SiO2, con distintas proporciones de sílice hasta el 30 wt%. El procedimiento de síntesis consistió en la copolimerización de los monómeros orgánicos durante la polimerización sol-gel simultánea de tetraetoxisilano, TEOS como precursor de sílice. El TEOS se hidroliza eficientemente y condensa dando lugar a sílice, y presenta una distribución homogénea en forma de agregados inconexos de nanopartículas de sílice elementales en los híbridos con bajos contenidos de sílice (10 wt%). La red polimérica orgánica se forma en los poros producidos en el interior de las nanopartículas elementales de sílice, y también en los poros formados entre los agregados de nanopartículas. Los nanohíbridos con contenidos de sílice intermedios (10-20 wt%) exhibieron las propiedades más equilibradas e interesantes: i) refuerzo mecánico de la matriz orgánica conseguida gracias a redes de sílice continuas e interpenetradas, ii) buena capacidad de hinchado debida a la expansión de la red orgánica no impedida todavía por un esqueleto de sílice rígido, y a un número alto de grupos silanol terminales hidrófilos (concentraciones inorgánicas en los alrededores de la coalescencia), y iii) mayor reactividad superficial debido a un contenido relativo bastante elevado de grupos polares silanol terminales disponibles en las superficies. La 'bioactividad' o capacidad de los materiales en bloque de formar hidroxiapatita (HAp) sobre sus superficies fue estudiada in vitro sumergiéndolos en fluido biológico simulado (simulated body fluid, SBF). La formación de la capa de HAp viene controlada por el mecanismo y el tiempo de inducción a la nucleación de la misma, que dependen a su vez de la estructura de la sílice.Vallés Lluch, A. (2008). P(EMA-co-HEA)/SiO2 hybrid nanocomposites for guided dentin tissue regeneration: structure, characterization and bioactivity [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/379

    Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes

    Full text link
    [EN] Poly(lactic-co-glycolic acid) (PLGA) and poly(caprolactone-co-glycolic acid) (PCLGA) solutions were electrospun into membranes with tailored fiber diameter of 1.8 mu m. This particular fiber diameter was tuned depending on the used co-polymer by adjusting the electrospinning parameters that mainly influence the fiber diameter. The greatest setting of the fiber diameter was achieved by varying the polymer solution parameters (polymer concentration, solvents and solvents ratio). PLGA was adequately electrospun with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), whereas PCLGA required a polar solvent (such as chloroform) with a lower dielectric constant. Moreover, due to the amorphous morphology of PCLGA, pyridine as salt had to be added to the starting solution to increase its conductivity and make it electrospinnable. Indeed, the electrospinning of this co-polymer presents notable difficulties due to its amorphous structure. Interestingly, PCLGA, having a higher glycolic acid molar fraction than commonly electrospun co-polymers (caprolactone:glycolic acid ratio of 45:55 instead of 90:10), could be successfully electrospun, which has not been reported to date. To an accurate setting of fiber diameter, the voltage and the distance from needle to collector were varied. Finally, the study of the surface tension, conductivity and viscosity of the polymer solutions allowed to correlate these particular characteristics of the solutions with the electrospinning variables so that prior knowledge of them enables predicting the required processing conditions.M. Herrero acknowledges the Spanish Ministerio de Economia y Competitividad for the BES-2016-078024 grant. A.Valles acknowledges the support of the Generalitat Valenciana, Conselleria de Educacion, Investigacion, Cultura y Deporte through project AEST/2020/052. CIBER-BBN is an initiative funded by the VI National R&D & I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Herrero-Herrero, M.; Gómez-Tejedor, J.; Vallés Lluch, A. (2021). Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes. Polymers. 13(5):1-11. https://doi.org/10.3390/polym13050695S11113

    Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite Nanotubes

    Full text link
    [EN] Hydroxyapatite (HA) and Halloysite nanotubes (HNTs) percentages have been optimized in Polycaprolactone (PCL) polymeric matrices to improve mechanical, thermal and biological properties of the composites, thus, to be applied in bone tissue engineering or as fixation plates. Addition of HA guarantees a proper compatibility with human bone due to its osteoconductive and osteoinductive properties, facilitating bone regeneration in tissue engineering applications. Addition of HNTs ensures the presence of tubular structures for subsequent drug loading in their lumen, of molecules such as curcumin, acting as controlled drug delivery systems. The addition of 20% of HA and different amounts of HNTs leads to a substantial improvement in mechanical properties with values of flexural strength up to 40% over raw PCL, with an increase in degradation temperature. DMA analyses showed stability in mechanical and thermal properties, having as a result a potential composite to be used as tissue engineering scaffold or resorbable fixation plate.Torres-Roca, E.; Fombuena, V.; Vallés Lluch, A.; Ellingham, T. (2017). Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite Nanotubes. Materials Science and Engineering C. 75:418-424. doi:10.1016/j.msec.2017.02.087S4184247

    The effect of salt fusion processing variables on structural, physicochemical and biological properties of poly(glycerol sebacate) scaffolds

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Polymeric Materials and Polymeric Biomaterials on SEP 21 2020, available online: https://www.tandfonline.com/doi/full/10.1080/00914037.2019.1636247"[EN] Poly(glycerol sebacate), PGS, is a biodegradable elastomer recently proposed in the form of scaffolds for cardiac, vascular, cartilage or neural applications. In the present work, several processing variables for the fabrication of PGS scaffolds by the salt fusion method were systematically studied, namely the pre-polymer/porogen ratio, the salt particles average size, use of tetrahydrofuran to dissolve the pre-polymer for its injection in the porogen template, and the curing pressure. The effect of these variables on their structural, mechanical and biological properties was assessed to select those leading to optimal ones in terms of their potential performance in tissue engineering applications.The authors acknowledge Spanish Ministerio de Economia y Competitividad through DPI2015-65401-C3-2-R project. The authors acknowledge the assistance and advice of the Electron Microscopy Service of the Universitat Politecnica de Valencia (Spain).Vilariño, G.; Muñoz-Santa, A.; Conejero-Garcia, Á.; Vallés Lluch, A. (2020). The effect of salt fusion processing variables on structural, physicochemical and biological properties of poly(glycerol sebacate) scaffolds. International Journal of Polymeric Materials. 69(14):938-945. https://doi.org/10.1080/00914037.2019.1636247S9389456914Fung, Y.-C. (1993). Bioviscoelastic Solids. Biomechanics, 242-320. doi:10.1007/978-1-4757-2257-4_7Chiang, B., Kim, Y. C., Doty, A. C., Grossniklaus, H. E., Schwendeman, S. P., & Prausnitz, M. R. (2016). Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. Journal of Controlled Release, 228, 48-57. doi:10.1016/j.jconrel.2016.02.041Appuhamillage, G. A., Reagan, J. C., Khorsandi, S., Davidson, J. R., Voit, W., & Smaldone, R. A. (2017). 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction. Polymer Chemistry, 8(13), 2087-2092. doi:10.1039/c7py00310bZhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001Gao, S., Guo, W., Chen, M., Yuan, Z., Wang, M., Zhang, Y., … Guo, Q. (2017). Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 5(12), 2273-2285. doi:10.1039/c6tb03299kHu, X., Hu, T., Guan, G., Yu, S., Wu, Y., & Wang, L. (2017). Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(3), 954-964. doi:10.1002/jbm.b.33909Recco, M. S., Floriano, A. C., Tada, D. B., Lemes, A. P., Lang, R., & Cristovan, F. H. (2016). Poly(3-hydroxybutyrate-co-valerate)/poly(3-thiophene ethyl acetate) blends as a electroactive biomaterial substrate for tissue engineering application. RSC Advances, 6(30), 25330-25338. doi:10.1039/c5ra26747aRibeiro Lopes, J., Azevedo dos Reis, R., & Almeida, L. E. (2016). Production and characterization of films containing poly(hydroxybutyrate) (PHB) blended with esterified alginate (ALG-e) and poly(ethylene glycol) (PEG). Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44362Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602Nagata, M., Kiyotsukuri, T., Ibuki, H., Tsutsumi, N., & Sakai, W. (1996). Synthesis and enzymatic degradation of regular network aliphatic polyesters. Reactive and Functional Polymers, 30(1-3), 165-171. doi:10.1016/1381-5148(95)00107-7Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., … Vunjak-Novakovic, G. (2006). Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 12(8), 2077-2091. doi:10.1089/ten.2006.12.2077Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47-57. doi:10.1016/j.biomaterials.2007.09.010Ravichandran, R., Venugopal, J. R., Sundarrajan, S., Mukherjee, S., & Ramakrishna, S. (2011). Poly(Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction. Tissue Engineering Part A, 17(9-10), 1363-1373. doi:10.1089/ten.tea.2010.0441Masoumi, N., Annabi, N., Assmann, A., Larson, B. L., Hjortnaes, J., Alemdar, N., … Khademhosseini, A. (2014). Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 35(27), 7774-7785. doi:10.1016/j.biomaterials.2014.04.039Masoumi, N., Jean, A., Zugates, J. T., Johnson, K. L., & Engelmayr, G. C. (2012). Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. Journal of Biomedical Materials Research Part A, 101A(1), 104-114. doi:10.1002/jbm.a.34305Motlagh, D., Yang, J., Lui, K. Y., Webb, A. R., & Ameer, G. A. (2006). Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 27(24), 4315-4324. doi:10.1016/j.biomaterials.2006.04.010Frydrych, M., Román, S., MacNeil, S., & Chen, B. (2015). Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomaterialia, 18, 40-49. doi:10.1016/j.actbio.2015.03.004SUNDBACK, C., SHYU, J., WANG, Y., FAQUIN, W., LANGER, R., VACANTI, J., & HADLOCK, T. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454-5464. doi:10.1016/j.biomaterials.2005.02.004Deng, Y., Bi, X., Zhou, H., You, Z., Wang, Y., … Fan, X. (2014). Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. European Cells and Materials, 27, 13-25. doi:10.22203/ecm.v027a02Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., Xue, Y., & Ma, P. X. (2015). A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 3(16), 3222-3233. doi:10.1039/c4tb01693aZaky, S. H., Lee, K. W., Gao, J., Jensen, A., Verdelis, K., Wang, Y., … Sfeir, C. (2017). Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomaterialia, 54, 95-106. doi:10.1016/j.actbio.2017.01.053Jeong, C. G., & Hollister, S. J. (2010). A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 31(15), 4304-4312. doi:10.1016/j.biomaterials.2010.01.145Kemppainen, J. M., & Hollister, S. J. (2010). Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, 94A(1), 9-18. doi:10.1002/jbm.a.32653Sant, S., Hwang, C. M., Lee, S.-H., & Khademhosseini, A. (2011). Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 283-291. doi:10.1002/term.313Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 12(4), 917-925. doi:10.1089/ten.2006.12.917Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326Maliger, R., Halley, P. J., & Cooper-White, J. J. (2012). Poly(glycerol-sebacate) bioelastomers-kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 127(5), 3980-3986. doi:10.1002/app.37719Ifkovits, J. L., Padera, R. F., & Burdick, J. A. (2008). Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomedical Materials, 3(3), 034104. doi:10.1088/1748-6041/3/3/034104Chen, Q.-Z., Ishii, H., Thouas, G. A., Lyon, A. R., Wright, J. S., Blaker, J. J., … Harding, S. E. (2010). An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 31(14), 3885-3893. doi:10.1016/j.biomaterials.2010.01.10

    Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis inInternational Journal of Polymeric Materials and Polymeric Biomaterials on AUG 08 2020, available online: https://www.tandfonline.com/doi/full/10.1080/00914037.2019.1616197"[EN] Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles were synthesized to explore their potential use in the biomedical field. The nanoparticles were two distinct polyhedral oligomeric silsesquioxanes (POSS), both used at 5% wt/wt concentration, specifically methacrylisobutyl POSS and methacryl POSS. These materials were investigated for their possible application as coatings as well as with regenerative purposes in dental engineering, and their viability for this application was assessed. Thus, pure PGS and nanohybrids thereof were obtained as scaffolds (that is, porous structures, designed with regenerative purposes) and as films (intended for coatings and to be used as controls).The authors acknowledge Dr. Kirsten Techmer from Geoscience Center of the Georg-August-University Gottingen for performing the EDX-SEM analysis, the assistance and advice of the Julich Center for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Julich GmbH (Germany), and the Electron Microscopy Service of the Universitat Politecnica de Valencia (Spain). This work was partially funded by the Spanish Ministerio de Economía y Competitividad through DPI2015-65401-C3-2-R project and by the German Research Foundation [DFG/MWK INST 1525/39-1 FUGG]. A.V.-Ll. acknowledges the support of the Generalitat Valenciana, Conselleria de Educación, Investigación, Cultura y Deporte through project AEST/2018/014.Tallá Ferrer, C.; Vilariño, G.; Rizk, M.; Sydow, H.; Vallés Lluch, A. (2020). Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering. International Journal of Polymeric Materials. 69(12):761-772. https://doi.org/10.1080/00914037.2019.1616197S7617726912Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602Loh, X. J., Abdul Karim, A., & Owh, C. (2015). Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, 3(39), 7641-7652. doi:10.1039/c5tb01048aRai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051-1078. doi:10.1016/j.progpolymsci.2012.02.001Serrano, M. C., Chung, E. J., & Ameer, G. A. (2010). Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Advanced Functional Materials, 20(2), 192-208. doi:10.1002/adfm.200901040Zhang, X., Jia, C., Qiao, X., Liu, T., & Sun, K. (2016). Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polymer Testing, 54, 118-125. doi:10.1016/j.polymertesting.2016.07.006MacDonald, R. A., Laurenzi, B. F., Viswanathan, G., Ajayan, P. M., & Stegemann, J. P. (2005). Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. Journal of Biomedical Materials Research Part A, 74A(3), 489-496. doi:10.1002/jbm.a.30386Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., … Endo, M. (2009). Carbon nanotubes: biomaterial applications. Chemical Society Reviews, 38(7), 1897. doi:10.1039/b804822nChawla, R., Tan, A., Ahmed, M., Crowley, C., Moiemen, N. S., Cui, Z., … Seifalian, A. M. (2014). A polyhedral oligomeric silsesquioxane–based bilayered dermal scaffold seeded with adipose tissue–derived stem cells: in vitro assessment of biomechanical properties. Journal of Surgical Research, 188(2), 361-372. doi:10.1016/j.jss.2014.01.006Campbell, K., Craig, D. Q. M., & McNally, T. (2008). Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion. International Journal of Pharmaceutics, 363(1-2), 126-131. doi:10.1016/j.ijpharm.2008.06.027Scott, D. W. (1946). Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1. Journal of the American Chemical Society, 68(3), 356-358. doi:10.1021/ja01207a003Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 12(4), 917-925. doi:10.1089/ten.2006.12.917Klimek, J., Hellwig, E., & Ahrens, G. (1982). Fluoride Taken Up by Plaque, by the Underlying Enamel and by Clean Enamel from Three Fluoride Compounds in vitro. Caries Research, 16(2), 156-161. doi:10.1159/000260592Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., Xue, Y., & Ma, P. X. (2015). A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 3(16), 3222-3233. doi:10.1039/c4tb01693aWu, Y., Shi, R., Chen, D., Zhang, L., & Tian, W. (2011). Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. Journal of Applied Polymer Science, 123(3), 1612-1620. doi:10.1002/app.34556Liang, S.-L., Cook, W. D., Thouas, G. A., & Chen, Q.-Z. (2010). The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials, 31(33), 8516-8529. doi:10.1016/j.biomaterials.2010.07.105Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017Wahab, M. A., Kim, I., & Ha, C.-S. (2003). Microstructure and properties of polyimide/poly(vinylsilsesquioxane) hybrid composite films. Polymer, 44(16), 4705-4713. doi:10.1016/s0032-3861(03)00429-4Yan Song, X., Ping Geng, H., & Li, Q. F. (2006). The synthesis and characterization of polystyrene/magnetic polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer, 47(9), 3049-3056. doi:10.1016/j.polymer.2006.02.055Kerativitayanan, P., & Gaharwar, A. K. (2015). Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomaterialia, 26, 34-44. doi:10.1016/j.actbio.2015.08.025Liu, J., Zheng, H., Poh, P., Machens, H.-G., & Schilling, A. (2015). Hydrogels for Engineering of Perfusable Vascular Networks. International Journal of Molecular Sciences, 16(7), 15997-16016. doi:10.3390/ijms160715997Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022Jones, J. R. (2006). Scaffolds for Cell and Tissue Engineering. Wiley Encyclopedia of Biomedical Engineering. doi:10.1002/9780471740360.ebs140

    Role of Curing Temperature of Poly(Glycerol Sebacate) Substrates on Protein-Cell Interaction and Early Cell Adhesion

    Full text link
    [EN] A novel procedure to obtain smooth, continuous polymeric surfaces from poly(glycerol sebacate) (PGS) has been developed with the spin-coating technique. This method proves useful for separating the effect of the chemistry and morphology of the networks (that can be obtained by varying the synthesis parameters) on cell-protein-substrate interactions from that of structural variables. Solutions of the PGS pre-polymer can be spin-coated, to then be cured. Curing under variable temperatures has been shown to lead to PGS networks with different chemical properties and topographies, conditioning their use as a biomaterial. Particularly, higher synthesis temperatures yield denser networks with fewer polar terminal groups available on the surface. Material-protein interactions were characterised by using extracellular matrix proteins such as fibronectin (Fn) and collagen type I (Col I), to unveil the biological interface profile of PGS substrates. To that end, atomic force microscopy (AFM) images and quantification of protein adsorbed in single, sequential and competitive protein incubations were used. Results reveal that Fn is adsorbed in the form of clusters, while Col I forms a characteristic fibrillar network. Fn has an inhibitory effect when incubated prior to Col I. Human umbilical endothelial cells (HUVECs) were also cultured on PGS surfaces to reveal the effect of synthesis temperature on cell behaviour. To this effect, early focal adhesions (FAs) were analysed using immunofluorescence techniques. In light of the results, 130 degrees C seems to be the optimal curing temperature since a preliminary treatment with Col I or a Fn:Col I solution facilitates the formation of early focal adhesions and growth of HUVECs.This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2015-65401-C3-2-R. A. Valles acknowledges the support of the Generalitat Valenciana, Conselleria de Educacion, Investigacion, Cultura y Deporte through project AEST/2020/052.Martín-Cabezuelo, R.; Rodriguez-Hernandez, J.; Vilariño, G.; Vallés Lluch, A. (2021). Role of Curing Temperature of Poly(Glycerol Sebacate) Substrates on Protein-Cell Interaction and Early Cell Adhesion. Polymers. 13(3):1-14. https://doi.org/10.3390/polym13030382S11413

    Coating typologies and constrained swelling of hyaluronic acid gels within scaffold pores

    Full text link
    [EN] A set of elastomeric scaffolds with a well defined porous structure was prepared with a template leaching procedure and coated with hyaluronic acid solutions. Depending on the coating process parameters the hyaluronic acid deposited on the pores had configurations ranging from thin disconnected aggregates to a thick continuous layer on the pore surface. The development of the coating layer was studied by scanning electron microscopy and the materials were subjected to dynamical and equilibrium swelling experiments in a water vapor ambient of fixed activity. The porosity change due to coating and to swelling of the coating layer were determined. The hyaluronic acid coating the pores has a different swelling capacity depending on the type of layer formed, as a consequence of the scaffold constraint and of the layer typology. These factors were investigated analytically by modifying the standard theory of gel swelling. An experimental quantity is introduced which reflects the constrainment build-up on gel swelling. © 2011 Elsevier Inc.The authors acknowledge the support of the FP7 NMP3-SL-2009-229239 project "Regeneration of cardiac tissue assisted by bioactive implants (RECATABI)". MMP further acknowledges the support of the Spanish Science & Innovation Ministry through project MAT2008-06434. Roberto Garcia Gomez is thanked for his help in preparing the bare scaffolds.Arnal Pastor, MP.; Vallés Lluch, A.; Keicher, M.; Monleón Pradas, M. (2011). Coating typologies and constrained swelling of hyaluronic acid gels within scaffold pores. Journal of Colloid and Interface Science. 361(1):361-369. https://doi.org/10.1016/j.jcis.2011.05.013S361369361

    Topologically controlled hyaluronan-based gel coatings of hydrophobic grid-like scaffolds to modulate drug delivery

    Full text link
    [EN] Scaffolds based on poly(ethyl acrylate) having interwoven channels were coated with a hyaluronan (HA) hydrogel to be used in tissue engineering applications. Controlled typologies of coatings evolving from isolated aggregates to continuous layers, which eventually clog the channels, were obtained by using hyaluronan solutions of different concentrations. The efficiency of the HA loading was determined using gravimetric and thermogravimetric methods, and the hydrogel loss during the subsequent crosslinking process was quantified, seeming to depend on the mass fraction of hyaluronan initially incorporated to the pores. The effect of the topologically different coatings on the scaffolds, in terms of mechanical properties and swelling at equilibrium under different conditions was evaluated and correlated with the hyaluronan mass fraction. The potential of these hydrogel coatings as vehicle for controlled drug release from the scaffolds was validated using a protein model.The authors acknowledge the financing through projects FP7 NMP3-SL-2009-229239 (RECATABI) and MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministry of Education through M. Arnal-Pastor FPU2009-1870 and M. Perez-Garnes BES-2009-015314 grants.Arnal Pastor, MP.; Perez Garnes, M.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Topologically controlled hyaluronan-based gel coatings of hydrophobic grid-like scaffolds to modulate drug delivery. Colloids and Surfaces B Biointerfaces. 140:412-420. https://doi.org/10.1016/j.colsurfb.2016.01.004S41242014

    Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications

    Full text link
    [EN] We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (¿-caprolactone) (PCL) was blended with its more hydrophilic counterpart poly (lactic acid) (PLA) and the hydrophilic acrylate poly (2-hydroxyethyl methacrylate) (PHEMA) was analogously compared to poly (ethyl methacrylate) (PEMA) and its copolymer. The addition of HA and HNTs clearly improve surface wettability in neat samples (PCL and PHEMA), but not that of the corresponding binary blends. Energy-dispersive X-ray spectroscopy mapping analyses show a homogenous distribution of HA with appropriate Ca/P ratios between 1.3 and 2, even on samples that were incubated for seven days in simulated body fluid, with the exception of PHEMA, which is excessively hydrophilic to promote the deposition of salts on its surface. HNTs promote large aggregates on more hydrophilic polymers. The degradation process of the biodegradable polyester PCL blended with PLA, and the addition of HA and HNTs, provide hydrophilic units and decrease the overall crystallinity of PCL. Consequently, after 12 weeks of incubation in phosphate buffered saline the mass loss increases up to 48% and mechanical properties decrease above 60% compared with the PCL/PLA blend.Dominguez-Candela thanks the Universitat Politècnica de València for the financial support through an FPI-UPV grant (PAID-01-19)Torres, E.; Domínguez-Candela, I.; Castelló-Palacios, S.; Vallés Lluch, A.; Fombuena, V. (2020). Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications. Polymers. 12(8):1-13. https://doi.org/10.3390/polym12081703S113128Noyama, Y., Miura, T., Ishimoto, T., Itaya, T., Niinomi, M., & Nakano, T. (2012). Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant. MATERIALS TRANSACTIONS, 53(3), 565-570. doi:10.2320/matertrans.m2011358Temple, J. P., Hutton, D. L., Hung, B. P., Huri, P. Y., Cook, C. A., Kondragunta, R., … Grayson, W. L. (2014). Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.35107Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0Li, X., Cui, R., Sun, L., Aifantis, K. E., Fan, Y., Feng, Q., … Watari, F. (2014). 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science, 2014, 1-13. doi:10.1155/2014/829145Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2016). Recent advances in aliphatic polyesters for drug delivery applications. WIREs Nanomedicine and Nanobiotechnology, 9(4). doi:10.1002/wnan.1446Venkatesan, J., & Kim, S.-K. (2014). Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. Journal of Biomedical Nanotechnology, 10(10), 3124-3140. doi:10.1166/jbn.2014.1893Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. doi:10.1016/j.biomaterials.2005.04.036Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039Lowry, K. J., Hamson, K. R., Bear, L., Peng, Y. B., Calaluce, R., Evans, M. L., … Allen, W. C. (1997). Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research, 36(4), 536-541. doi:10.1002/(sici)1097-4636(19970915)36:43.0.co;2-8Corden, T. J., Jones, I. A., Rudd, C. D., Christian, P., Downes, S., & McDougall, K. E. (2000). Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomaterials, 21(7), 713-724. doi:10.1016/s0142-9612(99)00236-7Onal, L., Cozien-Cazuc, S., Jones, I. A., & Rudd, C. D. (2007). Water absorption properties of phosphate glass fiber-reinforced poly-ε-caprolactone composites for craniofacial bone repair. Journal of Applied Polymer Science, 107(6), 3750-3755. doi:10.1002/app.27518Ahmed, I., Parsons, A. J., Palmer, G., Knowles, J. C., Walker, G. S., & Rudd, C. D. (2008). Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomaterialia, 4(5), 1307-1314. doi:10.1016/j.actbio.2008.03.018Gough, J. E., Christian, P., Scotchford, C. A., Rudd, C. D., & Jones, I. A. (2001). Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Journal of Biomedical Materials Research, 59(3), 481-489. doi:10.1002/jbm.10020Gough, J. E., Christian, P., Unsworth, J., Evans, M. P., Scotchford, C. A., & Jones, I. A. (2004). Controlled degradation and macrophage responses of a fluoride-treated polycaprolactone. Journal of Biomedical Materials Research, 69A(1), 17-25. doi:10.1002/jbm.a.20072Choi, W.-Y., Kim, H.-E., & Koh, Y.-H. (2012). Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. Journal of Porous Materials, 20(4), 701-708. doi:10.1007/s10934-012-9644-4Yeo, M. G., & Kim, G. H. (2011). Preparation and Characterization of 3D Composite Scaffolds Based on Rapid-Prototyped PCL/β-TCP Struts and Electrospun PCL Coated with Collagen and HA for Bone Regeneration. Chemistry of Materials, 24(5), 903-913. doi:10.1021/cm201119qSalerno, A., Zeppetelli, S., Di Maio, E., Iannace, S., & Netti, P. A. (2011). Design of Bimodal PCL and PCL-HA Nanocomposite Scaffolds by Two Step Depressurization During Solid-state Supercritical CO2 Foaming. Macromolecular Rapid Communications, 32(15), 1150-1156. doi:10.1002/marc.201100119Jackson, I. T., & Yavuzer, R. (2000). Hydroxyapatite cement: an alternative for craniofacial skeletal contour refinements. British Journal of Plastic Surgery, 53(1), 24-29. doi:10.1054/bjps.1999.3236Miller, L., Guerra, A. B., Bidros, R. S., Trahan, C., Baratta, R., & Metzinger, S. E. (2005). A Comparison of Resistance to Fracture Among Four Commercially Available Forms of Hydroxyapatite Cement. Annals of Plastic Surgery, 55(1), 87-92. doi:10.1097/01.sap.0000162510.05196.c6Lawson, E. E., Barry, B. W., Williams, A. C., & Edwards, H. G. M. (1997). Biomedical Applications of Raman Spectroscopy. Journal of Raman Spectroscopy, 28(2-3), 111-117. doi:10.1002/(sici)1097-4555(199702)28:2/33.0.co;2-zLoty, C., Sautier, J.-M., Boulekbache, H., Kokubo, T., Kim, H.-M., & Forest, N. (2000). In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 49(4), 423-434. doi:10.1002/(sici)1097-4636(20000315)49:43.0.co;2-7Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3Torres, E., Vallés-Lluch, A., Fombuena, V., Napiwocki, B., & Lih-Sheng, T. (2017). Influence of the Hydrophobic-Hydrophilic Nature of Biomedical Polymers and Nanocomposites on In Vitro Biological Development. Macromolecular Materials and Engineering, 302(12), 1700259. doi:10.1002/mame.201700259Chen, B., & Sun, K. (2005). Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(ε-caprolactone). Polymer Testing, 24(8), 978-982. doi:10.1016/j.polymertesting.2005.07.013Heo, S.-J., Kim, S.-E., Wei, J., Hyun, Y.-T., Yun, H.-S., Kim, D.-H., … Shin, J.-W. (2008). Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.31726Lee, K.-S., & Chang, Y.-W. (2012). Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 128(5), 2807-2816. doi:10.1002/app.38457Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4Zhou, W. Y., Guo, B., Liu, M., Liao, R., Rabie, A. B. M., & Jia, D. (2009). Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.32656Xue, W., Bandyopadhyay, A., & Bose, S. (2009). Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 5(5), 1686-1696. doi:10.1016/j.actbio.2009.01.012Torres, E., Fombuena, V., Vallés-Lluch, A., & Ellingham, T. (2017). Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. Materials Science and Engineering: C, 75, 418-424. doi:10.1016/j.msec.2017.02.087Abe, Y., Kokubo, T., & Yamamuro, T. (1990). Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of Materials Science: Materials in Medicine, 1(4), 233-238. doi:10.1007/bf00701082Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472-480. doi:10.1067/mva.2003.88Kim, H.-M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., … Nakamura, T. (1999). Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. Journal of Biomedical Materials Research, 46(2), 228-235. doi:10.1002/(sici)1097-4636(199908)46:23.0.co;2-jTAKADAMA, H., KIM, H.-M., MIYAJI, F., KOKUBO, T., & NAKAMURA, T. (2000). Mechanism of Apatite Formation Induced by Silanol Groups. TEM observation. Journal of the Ceramic Society of Japan, 108(1254), 118-121. doi:10.2109/jcersj.108.1254_118Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022HUTCHENS, S., BENSON, R., EVANS, B., ONEILL, H., & RAWN, C. (2006). Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials, 27(26), 4661-4670. doi:10.1016/j.biomaterials.2006.04.032Kim, H.-M., Himeno, T., Kawashita, M., Kokubo, T., & Nakamura, T. (2004). The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of The Royal Society Interface, 1(1), 17-22. doi:10.1098/rsif.2004.0003Azzopardi, P. V., O’Young, J., Lajoie, G., Karttunen, M., Goldberg, H. A., & Hunter, G. K. (2010). Roles of Electrostatics and Conformation in Protein-Crystal Interactions. PLoS ONE, 5(2), e9330. doi:10.1371/journal.pone.0009330Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 69(1), 11-25. doi:10.1016/0092-8674(92)90115-sWassell, D. T. H., Hall, R. C., & Embery, G. (1995). Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials, 16(9), 697-702. doi:10.1016/0142-9612(95)99697-kZhou, H., Wu, T., Dong, X., Wang, Q., & Shen, J. (2007). Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochemical and Biophysical Research Communications, 361(1), 91-96. doi:10.1016/j.bbrc.2007.06.169Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. doi:10.1016/s0142-9612(00)00101-0Li, H., Chen, Y., & Xie, Y. (2003). Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Materials Letters, 57(19), 2848-2854. doi:10.1016/s0167-577x(02)01386-1Albertsson, A.-C., & Varma, I. K. (2002). Aliphatic Polyesters: Synthesis, Properties and Applications. Degradable Aliphatic Polyesters, 1-40. doi:10.1007/3-540-45734-8_
    corecore